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The dynamic interaction between a rigid porous structure (porosity $) and its 
saturating fluid is studied. From the microscopic conservation laws and constitutive 
relations, macroscopic equations are derived. An averaging technique proposed and 
discussed by for example LBvy, Auriault and Burridge & Keller is used, from which 
we reformulate the theory by Johnson, Koplik & Dashen. The macroscopic equations 
then serve to describe the high-frequency behaviour of an oscillating fluid within a 
porous sample. This behaviour may be characterized by the length parameter A and 
by the tortuosity parameter a,. It is shown that A and a,, which describe an 
oscillatory flow behaviour, may be evaluated on the basis of steady potential flow 
theory. Numerical results are then presented for several pore geometries, and for 
these geometries, the steady-state permeability k, is computed numerically also. The 
parameter 8a,k,/$A2, first introduced by Johnson et al., is then evaluated and 
appears to be weakly dependent on pore geometry. This implies that for many porous 
media the dynamic interaction is described by an approximate scaling function. New 
experimental data, concerning oscillating flows through several porous media, are 
presented. Within limits of accuracy, these data are in agreement with the 
approximate scaling function. 

1. Introduction 
There are many technological areas for which it is interesting to know how fluid 

flows through porous media. The dynamic permeability k(w) and the dynamic 
tortuosity a(@) are important properties to describe the macroscopic flow through 
porous media subjected to an oscillatory pressure gradient. Introducing an exp 
( -iwt) dependence for the fluid pressure p and the macroscopic fluid velocity u,, k(w)  
and a ( w )  are defined by 

- iwp, a ( w )  8, = - V$. 
In  these two expressions, 7 is the fluid viscosity, pi the fluid density and $ 
porosity. In  the past few years, many authors have attempted to express 
macroscopic fluid behaviour in terms of averaged microscopic equations. Various 
authors have considered the steady-state permeability k, for stationary flow (Larson 
& Higdon 1989; Beasley & Torquato 1988; Rubinstein & Torquato 1989; Mei & 
Auriault 1991). The steady-state permeability is a real-valued quantity, defined by 

limk(w) = k,. 
-0 

(3) 
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For the dynamic permeability k(w),  however, fewer results are available. G v y  
(1979), Auriault (1980) and Burridge & Keller (1981) derived a two-scale 
homogenization formalism to describe the dynamical behaviour of a Newtonian fluid 
within a porous, elastic, medium. This dynamical behaviour is expressed in terms of 
averaged microscopic equations. Auriault, Borne & Chambon (1985) were the first to 
present both numerical and experimental data for a schematized, periodic, porous 
medium. They compared their results to an asymptotic, high-frequency, approxi- 
mation. In  1987, Johnson, Koplik & Dashen described the dynamic permeability 
behaviour over the entire frequency range by a scaling function. They argue that the 
reduced dynamic permeability k ( w ) / k ,  must depend on a reduced frequency w/w,, 
where w, is a rollover frequency from a viscosity-dominated regime to an inertia- 
dominated one : 

where a, is the tortuosity, defined by 

w, = r+/PPkoam7 (4) 

lim a(@) = a,. (5 )  
W+W 

By analysing the behaviour for high frequencies, Johnson et al. (1987) also found that 
k(w) /ko  must be a function of yet another parameter 

M = 8a, kO/$A2,  (6) 
where A is an independently measurable property of a porous material with the 
dimension of length. In the same paper the parameter M is suggested to equal 1 for 
all porous media, at least approximately. So many porous media satisfy the simple 
approximate scaling law that k ( w ) / k ,  is a function of only one independent 
parameter w / o , .  All this was also briefly commented upon later (Johnson 1989). The 
assumption that there exists only one scaling function for all porous media was 
validated in later years, both numerically and experimentally. Numerical com- 
putations of the dynamic permeability for a variety of microstructures were 
presented by Sheng & Zhou (1988) and Yavari & Bedford (1990). Experimental data 
were obtained by Charlaix, Kushnick & Stokes (1988). 

In this paper, three subjects will be treated. First, we will derive, from 
microstructure, the averaged dynamic permeability relations already presented by 
LBvy (1979), Auriault (1980) and Burridge & Keller (1981). Our relations are 
simplified somewhat because we have assumed the porous medium to be rigid. The 
unique macroscopic dynamic permeability k(w) /k , ,  presented by Johnson et al. 
(1987), is then expressed in terms of averaged microscopic relations. High-frequency 
behaviour is studied. 
Secondly, we will present a method for the numerical computation of the 

constituents of the parameter M given in (6). Two different axisymmetrical pore 
geometries will be considered, and values of M for different geometries will be given. 
Thirdly, we will present new experimental dynamic permeability data and compare 
these to the scaling function proposed by Johnson et al. (1987). 

2. Microstructural approach 
The microstructure of a random porous medium is generally characterized by a 

lengthscale a that is typical of the pore size. An extended statistical characterization 
in terms of various kinds of correlation functions has been considered by several 
authors (Rubinstein & Torquato 1989; Bear & Bachmat 1990). Another scale of 
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description is the macroscopic level, at which measurable continuous and 
differentiable quantities may be identified and boundary-value problems can be 
stated and solved. Its lengthscale is called L. We now define E as alL. Considering a 
rigid fluid-filled porous medium, we may write the linearized microscopic fluid 
equations : 

au 
pf 5 = - vp + 7V2U + (7 + 7’) V(V . u) ,  (7) 

where 7’ is the fluid dilatation viscosity and Kf is the fluid bulk modulus. Substitution 
of an exp ( - id )  dependence for the pressure p and fluid velocity u yields 

-iwpi G = - V$ + yV2G + (7 + 7’) V(V-G), (9) 
-iw$/K, = -V.li .  (10) 

Equations (9) and (10) may be written in dimensionless form by introducing 
reference parameters uref = 7/pra, pre, = Ly2/p,a3, w,,, = q/pf a2 and tref = l /wref:  

iGjj = (I/€) +-a ,  (12) 
where e = aV. 

We may now apply the well-known technique of homogenization (LBvy 1979; 
Auriault 1980; Burridge & Keller 1981), involving the explicit recognition of two 
lengthscales in the problem by writing all quantities as a function of E and the two 
spatial variables x = r/L and y = r/a,  and then expanding them as a perturbation 
series in E .  Furthermore, the gradient operator V acts on both the x- and y-scales: 

a = uo(x,y)+€U1(x,y)+. . . ,  

@ = p o ( x , y ) + € p l ( x , y ) + . . . ,  
e = EV,+V,. 

Note that for convenience the tilde has been omitted in the right-hand sides of the 
above equations. By now equating terms with equal powers of E we obtain 

-iGuo = -V,p,-V,p,+V~u,,  

iGpo = V,.u,+V,.u,, 
v, Po = 0, 

v,.u, = 0. 

Similar equations were found by LBvy (1979) and Auriault (1980). Equation (17) 
indicates that the pressure po is a function of the x spatial variable only and can 
therefore be identified as a measurable macroscopic quantity. Equation (19) 
indicates that the fluid may be regarded as incompressible on the microscopic level 
(y-scale). As pressure and velocity are complex-valued quantities, we may write from 

iGu: = -V,pt-V,pf+V;u;. (20) 
(16) 

The asterisk denotes complex-conjugated quantities. Multiplication of (16) and (20) 
by u: and u,, respectively, and subsequent addition yields 

- vg * (pl u; +pf u,) + u; . v; u, + uo. v; u: = u; . v,p, -k uo - v,p:. (21) 
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In  order to link this microscopic equation to its macroscopic equivalent we shall 
average it over the y-variable. Aiming to define the average of any function g, 'dehed 
for y in the fluid domain D,, we will use the technique proposed by Burridge t Keller 
(1981). We consider a sphere W of radius R and integrate g with respect to y over that 
part of D, which is contained in 9, and divide this integral by the volume of 9. 
Finally, taking the limit of this ratio as R + 00 we call this limit <g(x)).  Applying this 
procedure to (21) we find 

(u,*.v;u,+u,.v;u:) 

The surface S,, consists of two parts : the part of the pore surface within W : (8f)R, and 
the part of the surface of the sphere %! within D,: (SR),. Since the entire surface of the 
sphere is 4d2, the integral over it is bounded by some constant times R2. When 
divided by R3 this integral is zero as R -+ ao. Therefore, the surface of integration in 
(22) may be replaced by (sf),. Considering this surface, we find any fluid velocity 
perpendicular to the pore surface ( s f ) R  to be zero, and we are left with 

(u:. v; u, + u,. v; uo*) = (u:. vzpo + u,. v,p:>. 

(ii:. v; ii, +ii,. 9; a:) = a:. iizj50 + a,. iizj5:. 

(23) 

(24) 

We have reintroduced the tilde to focus attention on the dimensionless character of 
the quantities under consideration. The left-hand side of (24) is the averaged 
microscopic fluid response to the applied macroscopic pressure gradients on the 
right-hand side. However, this linear (i.e. small-amplitude) response of the pore fluid 
is usually described in terms of the macroscopic fluid velocity I,e-'& and the 
dynamic frequency-dependent tortuosity a(@). This relation was given by (2) : 

Defining the macroscopic fluid velocity 5, = (ii,), this equation may be rewritten: 

-iwa(w)p, ir, = -Vxjio. (25) 

It is noted by comparing (1) and (2) that a(@) and k ( o )  are not independent: 
a ( w ) / a ,  = ik,w,/wk(w). In dimensionless form (25) becomes 

(26) 

(27 ) 

I 

- iGa(w) 5, = - V,#,. 

iGa*(w) 8: = -ex#:. 

- 2 ~m { a ( w ) }  0 1 ~ ~ 1 2  = ii:.G,$, + i,-ii,@:. 

As a(@) is a complex-valued quantity we may write from (26) 

Multiplication of (26) and (27) by a: and I,, respectively, and subsequent addition 
yields an energy equation at  the macroscopic level : 

(28) 

In (24), the fluid response to the applied pressure gradients is written in terms of 
averaged microscopic velocities. In  (28), on the other hand, the fluid response to the 
applied macroscopic pressure gradients is written in terms of the macroscopic 
tortuosity a(@). We may now equate (24) and (28) to express a ( w )  in terms of ratios 
of averaged microscopic quantities : 
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We note that the right-hand side of (29) is, in fact, only determined by the frequency 
and by the pore geometry because of the proportionality between all velocities 
involved. After some algebraic manipulations and reintroducing dimensions we may 
write 

where summation over repeated indices is assumed. 
Replacing at the appropriate places in the previous derivation the addition by a 

subtraction, we may derive an expression for the real part of a(o) in a quite identical 
way : 

or alternatively 

3. High-frequency behaviour 
Having written the imaginary and real parts of a(@) in this way ((30) and (32)), we 

may now investigate the high-frequency behaviour of a(w) .  In  the limit of high 
frequencies, the viscous skin depth S = (27/wpl)i eventually becomes much smaller 
than any characteristic pore size. Any vorticity, V x u, generated at the pore walls 
decays to zero aa one moves away from the walls into the bulk of the pore. Therefore, 
except for a boundary layer of thickness 6, the fluid motion is given by potential flow, 
u = - V, $, for some $. Below, we shall show that for an ideal fluid the quantity a ( w )  
is a real-valued quantity a,, independent of fluid properties. Then we shall relate, 
exactly, the corrections to this extreme high-frequency limit a, to the microscopic 
potential flow field for high frequencies. We note that since S is arbitrarily small at 
high enough frequencies the walls of the pores appear to be flat in the boundary 
region. Therefore, introducing a boundary-layer velocity uoa at a distance 8 from the 
pore walls, the entire velocity field in the boundary layer is described by (Landau & 
Lifshitz 1959, p. 91) 

(33) 
In  this equation, /3 is a local coordinate, measured from the pore wall into the bulk 
of the pore, and k = (1 +i)/S is the shear wavenumber a t  frequency w .  By 
substituting (33) into (32), the second term in the right-hand side of (32) vanishes and 
we readily arrive at (w -+ 00)  : 

u, = uoa[ 1 - e’”B]. 

Re {a (w) }  = (lu,12~/l~,12. (34) 
Obviously, in the extreme high-frequency limit, the viscous skin depth 6 tends to zero 
and we may write 

(35) 

where up is the potential flow solution. In  Appendix A, we show that the high- 
frequency behaviour of Re {a(o)}, asymptotically approaching its extreme high- 
frequency limit a,, may be described by rewriting (34) in terms of this extreme high- 
frequency limit a, and the viscous skin depth S(w) (@+ co): 

lim Re{a(w)} = a, = ( ~ u p ~ z ) / ~ u o ~ z ,  
W W  

Re{a(w)} = a,V+ (1/4)  4 4 1 .  (36) 
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It is also shown in Appendix A that A,  has the dimension of length, and can be 
evaluated on the basis of steady potential flow theory: 

In this equation, we have defined a flow potential difference A$ between two 
arbitrary equipotential surfaces. Furthermore, [(a/&) GI,, denotes the derivative of 
some quantity G with respect to some outward virtual displacement r of the pore 
walls at constant A$. 

Next, we shall evaluate the asymptotic behaviour of the imaginary part Im{a(w)} 
by combination of (30), (33) and (35) ( w - t  G O ) :  

where the integration is over the pore wall surface S, and 17 is the pore volume. 
Furthermore, upw denotes the potential flow velocity at the wall. Interpreting the 
averaging operation in the denominator of (38) we may write (w+ GO) 

Im{a(w)} = a,&2//1,, (39) 

where the parameter A,  has the dimension of length and is given by 

Expression (40) was derived earlier by Johnson et al. (1987), on the basis of energy 
flux and energy dissipation considerations. The integration in the numerator of (40) 
is over the pore wall surface S ;  that of the denominator is over the pore volume. 
Thus, 2/A2 is essentially the surface-to-pore-volume ratio, in which each surface or 
volume element is weighted according to the local value of the field up. The 
motivation for defining A,  in this way becomes apparent considering a straight- 
forward potential flow through a cylindrical duct with radius R.  As up is the same 
everywhere in the duct, we easily find A ,  = R.  The error in (39) is of 0(d2) and thus 
(39) is satisfactorily accurate. Combination of (36) and (39) yields an expression for 
a(o) for higher frequencies with an error of 0(a2) (w+ 0 0 ) :  

The parameters A,  and A27 however, are not independent. Following the same 
reasoning as Johnson et al. (1987), we have the further requirement that a ( w )  should 
satisfy a symmetry relation : 

As we have 6( - w )  = T iS(w) we readily find from (41) : 

a( - w )  = a* (w) .  (42) 

(43). A,  = A ,  = A .  
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This modifies (41) to (w+ co): 

a(@) = am[l + (1 + i) & ( w ) / A ] .  (44) 

From (44) it becomes clear that the dynamic tortuosity a(w)/a,  in the high- 
frequency regime can be characterized by the parameter &/A,  or, alternatively, 
v/wA2,  where Y denotes the kinematic viscosity. Consequently, we may write that the 
dynamic permeability, or the corresponding dynamic tortuosity, is a function of two 
parameters : 

This confirms the assumption by Johnson et al. (1987) that the dynamic permeability 
is a function of o / w ,  andM. Furthermore, we have shown that the present results for 
a,, A,  and A ,  only contain real-valued quantities that can be evaluated on the basis 
of steady potential flow theory. As the steady-state permeability k, may be 
computed from the Stokes flow problem, we are now able to investigate the 
parameter M .  This has been done numerically for axisymmetrical model pores of 
different geometries. 

4. Numerical computations 
Numerical computations were performed on two different types of rotation- 

symmetrical pore geometries with length L,  drawn in figure 1. Pore type 1 has a 
width W and a rotational axis P, P5. The surface of revolution, bounding its pore 
volume, is described by the generator curve P, P3 P4. It consists of line element P3 P4 
and :-circle segment P, P3, with radius R and centre C. The geometry of pore type 1 
was varied in two different ways: altering R while maintaining W = L ;  altering W 
while maintaining R = 0.5L. 

Using the SEPRAN finite-element package (Cuvelier, Steenhoven & Segall986), we 
computed a,, A,  and k,,/$. Results are presented in figure 2. We used relations (35) 
and (40), respectively, to compute a, and A,.  In  this way, we solved the potential 
problem u, = -V,$,  where $ = 0 at z = 0 and $ = 1 at z = -L. Also, introducing 
the vector n normal to the pore walls, a Neumann-type boundary condition was 
prescribed at the pore walls : n - V, $ = 0. Furthermore, we computed ko/$ by solving 
the Stokes problem qVLu, = - V p ,  where p = 0 at z = 0 and p = 1 at z = -L .  A 
Dirichlet-type boundary condition was prescribed at  the pore walls: u, = 0. For all 
computations, the accuracy was checked by refining the numerical grid several times. 

Pore type 2 is described by generator curve P, P3 P4 P5. It consists of line-element 
P4 P5 and 4-circle segment P, P,, with radius R, and centre C,, and *-circle segment P3 
P4, with radius R, and centre C,. Both centres define the straight line C,C, at a 
distance 0.5L from the rotational axis P, P,. The distance between C, and C,, d(C,, 
C,) ,  is defined by the relation d(C,,  C,) = R, +R, = 0.755. The geometry of pore type 
2 was varied by changing both R, and R, according to this relation. Again, we 
computed am, A,  and k,/$. Again, the accuracy was checked by grid refinement. The 
results of these computations are presented in figure 3. Varying this pore geometry, 
we achieved a perpendicular pore wall shift which enabled us to compute Al, using 
(37). The results of this additional computation are included in figure 3 ( b ) .  We find 
to a good approximation that A,  = A,, as was also theoretically expected, thus 
showing the reliability of our numerical methods. The results of all computations 
were then used to obtain the values forM, using (6). TheseM-values are listed in table 
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z = - L  - 
PZ C 

i I 
FIQURE 1.  (a )  Pore type 1; ( b )  pore type 2. :pi 4 q - q  

2 

0 0.2 0.4 0.6 0.8 1.0 0.5 0.6 0.7 0.8 0.9 1.0 

1 .o 
0.8 

A 0.6 

L 0.4 

0.2 

- 

0 
" 
0.5 0.6 0.7 0.8 0.9 1.0 

0.15 

kcl - ' o . l o ~ ~  0.05 $!!----J 
0 0.2 0.4 0.6 0.8 1.0 0.5 0.6 0.7 0.8 0.9 1.0 

FIQURE 2. Numerical calculations of characteristic pore type 1 parameters: (a)  W / L  = 1.0, 
(a) RIL = 0.5. A has been calculated using the &approach. 

1.  It appears that M is weakly dependent on pore geometry. The parameters R/L,  
W / L  and RJL can be varied over a wide range of magnitudes without affecting M 
by more than about 20%. Maximum deviation from M = 1 is found for strongly 
curved pore geometries. Thus we find that many porous media satisfy the simple 
approximate scaling law that L(w)/k,  is a function of only one independent 
parameter, w/o, .  



Dynamic permeability 219 :I/l A :::Fi 0.3 

- 15 

10 L 0.2 
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0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

a m  

RlIL RIIL 

0.020 

0.015 

- 0.010 

0.005 

ko 
# 

0 0.1 0.2 0.3 0.4 0.5 

RlIL 
FIQURE 3. Numerical calculations of characteristic pore type 2 parameters. A has been 

calculated using both the A,  (A) and A,  (+ ) approach. 

RIL 
0.3 
0.5 
0.6 
0.7 
0.75 
0.8 
0.85 
0.9 
- 

M 

1.04f0.02 
1 .oak 0.02 
0.98f0.02 
0.98f0.02 
0.97 k0.02 
0.95k0.02 
0.95 f0.02 
0.93 f0.02 
- 

W / L  
1 .o 
0.9 
0.8 
0.7 
0.65 
0.6 
- 

M 
1.00~0.02  
0.99f0.02 
0.96 f 0.02 
0.95 f 0.02 
0.94f0.02 
0.93 f 0.02 
- 

R,/L 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

TABLE 1. Calculation of M-values for different pore types 

M 

1.25k0.07 
1.08 f 0.07 
1.03 0.07 
0.98 k 0.05 
0.96f0.05 
0.94f0.05 
0.92 f 0.05 
0.92 f 0.02 
0.90 f 0.02 

5. Measurements of dynamic permeability 
Auriault et al. (1985) were the first to report experimental data showing the 

transition from the viscosity-dominated low-frequency regime to the inertia- 
dominated high-frequency regime. We must notice that in their paper the dynamic 
permeability is written in the form r / k ( w )  = H I  +iHz. Measured data are presented 
for $a2H,/27 and $H,/p,  w ,  where a is a length parameter of the porous medium. For 
an oscillating flow within a cylindrical duct of radius R, we find 

a = R,  $azH,/2q = 4Re {k , /k (w) )  

and $H,/p,w = Re{&@)}. They paid particular attention to the high-frequency 
range. Measurements were performed on one slit-like pore geometry. In  1988, 
Charlaix et al. presented experimental data over a wide range of reduced frequencies. 
An oscillating flow was induced by an audio speaker, driving a latex membrane. They 
used small porous cylinders with lengths of 50-70 mm and diameters of 4.3 mm, 
consisting of sintered glass beads and sintered, crushed, glass. 

8 FLM 24.5 
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Contactle 
piston 

\ 

Water level 

Pressure 
transducer 2 

Porous 
material 

Pressure 
transducer 1 

. Inlet 

\ 
Membrane 

FIGURE 4. Dynamic permeability experimental set-up. 

Sample constituent 9 k, (lo-', m2) Ern 

(9 glass beads 0.40-0.52 mm 0.31 f O . O 1  1.40f0.05 2.8f0.1 
glass beads 1.16-1.40 mm 0.31f0.01 9.00f0.05 2.7f0.1 (ii) 

(iii) glass beads 2.5CL3.50 mm 0.32k0.01 42.0f0.5 2.5f0.1 
(iv) sand grains 0.3-0.6 mm 0.29k0.01 1.00+0.05 3.1f0.1 
(v) sand grains 2.M.O mm 0.31 f0.03 26f 1 2.8f0.3 

TABLE 2. Relevant sample properties 

We report here experimental data on dynamic permeability for five model porous 
media. We used the set-up drawn in figure 4, which had been schematically proposed 
by Biot (1961). The porous samples we study here are of five different particle types: 
(i) glass beads, size range 0 . 4 0 . 5 2  mm; (ii) glass beads, size range 1.16-1.40 mm; 
(iii) glass beads, size range 2.5CL3.50 mm; (iv) sand grains, size range 0.3-0.6 mm; (v) 
sand grains, size range 2.04 .0  mm. Each porous sample contains only one particle 
type. These particles are glued together and to the walls of a vertical brass cylinder 
by means of an epoxy resin, thus avoiding any free motion of the porous material. 
The brass cylinder has a length of 250 mm and an internal diameter of 60 mm. Each 
porous sample has a length Lo of 100 mm. Porosities are measured by using the 
standard two-weight (dry and buoyant) method and presented in table 2. As 
described previously, each porous sample may be characterized by a rollover 
frequency w,, which can only be calculated after determination of the stationary 
permeability k, and the tortuosity am as described in Appendix B. Results are 
presented in table 2. 

The sample is now carefully evacuated and the pores are filled with carbon dioxide. 
Then the sample is filled with degassed water until the water surface is about 20 mm 
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below the open upper cylinder end. Carbon dioxide is far more soluble in water than 
air, thus causing quick dissolution of any gas remnants. An oscillatory flow is induced 
by means of an MB Electronics EA 1500 permanent magnetic exciter, driving a 
contactless piston. The void space below the piston is bounded by a brass membrane, 
impermeably connected to both the cylinder wall and the piston rod. The frequency 
range is from 12 to 300 Hz, and so $- Lo, where we have introduced the wavelength 
A. Therefore, on this scale, fluid may be regarded incompressible. The experiment is 
run for displacement amplitudes corresponding to Reynolds numbers usually less 
than 1, where Reynolds numbers are taken with respect to the mean particle 
diameter. Therefore, the response of the fluid to the applied pressure gradient can 
still be considered linear. The pressure drop across the porous sample is measured 
using PCBl16A piezo-electric pressure transducers PT1 and PT2. PT1 is installed in 
the piston, whereas PT2 is mounted on the lower end of a cylindrical Perspex shaft. 
Signals are modified by means of Kistler 5001 amplifiers. Defining $, as the pressure 
amplitude recorded by PT2, and 6, as the undisturbed fluid velocity a t  some distance 
above PT2, flow rates are deduced from the upper pressure transducer measure- 
ments : 

where we have introduced the effective fluid height Leff above PT2. We computed 
the local flow pattern and pressure distribution in the vicinity of PT2 as a solution 
of the steady potential problem, using the SEPRAN finite-element package. We 
found Leff = L,+ AL, where L, is the length of the shaft below the fluid surface, and 
AL = 3.9 mm. Introducing the macroscopic fluid velocity 6, within the porous 
sample, we may write a dynamic equivalent of Darcy's law : 

-p,iw62 = $,/Len, (46) 

where $h and $/ are the fluid pressure amplitudes just below and above the porous 
sample, respectively. Pressures $1 and $, though, are recorded at some distances x1 
and x, below and above the porous sample (see figure 4). By means of local 
application of continuity and momentum equations, the pressures $,, and $/ can be 
expressed in terms of the recorded pressures j1 and 5, : 

where P is the shaft-to-cylinder area ratio. Results of dynamic permeability 
measurements are presented in figures 5(a) and 5 ( b ) .  For each porous sample, 
dynamic permeability and frequency are scaled by corresponding k, and w, values 
from table 2. In  figure 5(a),  one clearly observes the rollover of the modulus of 
Ic(w)/k, from the value 1 at low frequencies to a (w/wC)-' dependence at  high 
frequencies. This rollover behaviour is also clearly visible on considering the 
argument of k ( w ) / k ,  in figure 5 ( b ) .  Errors are indicated by the size of the symbols 
representing the measured data. The curves in figure 5 correspond to a scaling 
function proposed by Johnson et al. (1987) : 

where for definiteness we have chosen M = 1. We notice that there is good overall 
agreement between experiment and theory for both absolute and phase values. At 

8-2 
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FIGURE 5. (a) Absolute values and (a) phase values of dynamic permeability measurements 
performed on porous samples: 0,  sand grains 0.3-0.6 mm; + , glass beads 0.40.52 mm; 0, glass 
beads 1.1G1.40 mm; A, glass beads 2.50-3.50 mm; 0,  sand grains 2.04.0 mm. The curve 
represents the theoretical scaling function. Errors are indicated by the size of the data symbols. 

w/w,-values of about 0.5, the experimentally determined absolute values of k(w)/ko 
are somewhat lower than predicted. This is caused by a persistent set-up resonance 
observed in the case of small particles. At the same w/w,-values, this set-up 
resonance is also visible in the phase plot. Summarizing, we find that the present 
experimental results support the experiment-based conclusions of Charlaix et al. 
(1988) and the computational results of Sheng & Zhou (1988). 

6. Conclusions 
Our theoretical and experimental study allows the following conclusions to be 

drawn. 
(i) We have shown that the theoretical results presented previously by Johnson 

et al. (1987) can be derived in a rigorous manner using the homogenization technique 
proposed by LBvy (1979), Auriault (1980) and Burridge & Keller (1981). Doing so, we 
derived new expressions for the real and imaginary part of the dynamic tortuosity 
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parameter. These are exact results, applicable over the entire frequency range. It is 
shown that in the high-frequency limit the macroscopic measurable dynamic 
permeability is described by two parameters a, and A ,  characterizing the 
microscopic pore geometry properties. We find that it is possible to calculate A in two 
different ways, yielding the same result within limits of accuracy. 

(ii) Our numerical computations support the similarity assumption of Johnson 
et al. (1987), i.e. M z 1 for several pore types, although we have observed deviations 
up to 20 %, when calculating strongly curved pore geometries. 

(iii) Experimental data are obtained by application of a new frictionless piston- 
induced oscillation technique. These data are all on the same curve after performing 
a scaling operation and are in agreement with measured data by Charlaix et al. 
(1988). This measured curve is described, within limits of accuracy, by a scaling 
function defined by (50), where we have chosen M = 1. We find that, at low w/w,- 
values, the experimentally determined k ( o ) / k ,  values are slightly disturbed by a 
persistent set-up resonance. 

This work was supported by Grant No. ETN 37.1274 of the Netherlands 
Foundation for Fundamental Research on Matter. We are grateful to A. A. M. 
Wasser for his unremitting effort in constructing and improving the experimental 
set -up. 

Appendix A. Computation of A ,  
In  order to calculate the real part of the frequency-dependent tortuosity a ( w ) ,  we 

have assumed the potential flow solution to be bounded by the actual pore walls, 
thus neglecting viscosity effects and therefore introducing an error of O(6).  We shall 
now present a more detailed analysis to calculate the error under consideration, by 
linking the actual pore velocity u, to a potential flow solution up = - V, @. We shall 
choose @ in such a way that the flow rate Q, corresponding to the velocity 
distribution u,, equals the flow rate &, corresponding to the potential flow velocity 
distribution up. We shall introduce the pore wall shift as a potential flow modifying 
factor. 

A velocity u; is defined in such a way that uk equals uo everywhere except in the 
viscous boundary layer where uh has a fixed value &: 

,. ,. ,. 

The second term of the right-hand side of the above equation is zero, except in the 
boundary layer. Substituting the boundary-layer velocity distribution : 

u, = ui8[ 1 - eikq (A 2) 

and performing the integration in the second part of the right-hand side of (A 1) we 
arrive at  

where S denotes the poregrain interface surface. 
Next, aiming to link uk to the previously defined potential flow solution up, we note 

that, at constant flow rate, the presence of a viscous boundary layer of thickness S 
will cause the non-viscous velocity modulus Iu,I in the whole of the pore to be lower 
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than lu;l. Taking this into consideration, we write the squared velocity modulus lu;12 
as a Taylor series: 

where Ar is some virtual outward displacement of the pore walls at constant flow rate 
and ( a / a T )  G denotes the derivative of some quantity G with respect to this virtual 
displacement. To emphasize that the derivative is at constant flow rate, the subscript 
Q is added. 

In  order to estimate the value of Ar, we will compare the velocity distribution u; 
to the actual velocity distribution u,. We notice that the presence of the viscous 
boundary layer will introduce a small complex-valued flow rate difference 
Qa = Qi-Q,, where Q; is the flow rate corresponding to the velocity distribution u;. 
As IQal 4 IQJ, we may write a first-order approximation for IQ,I : 

IQ,I = IQ;I-ReI(u;-~,).ndadl, (A 5 )  

where 2 is a circumferential coordinate perpendicular both to the pore wall surface 
and the boundary-layer velocity. Furthermore, n is the normal vector defining the 
surface element dpdl. Substitution of (A 2) into (A 5) yields 

(A 6) 
IQ,I = IQ;l-~f&,.ndl. s 

The second term of the right-hand side of (A 6) can be interpreted as a virtual 
shifting of the pore walls over a distance -is. By definition we may write Q = Q0 and 
we may therefore conclude that Ar = -is. 

Now integrating (A 4) over the pore volume we arrive at 

In (A 3) we may replace uia by the potential flow velocity at the wall upw without loss 
of accuracy, i.e. accepting an error of 0(s2). This is easily seen by writing luha12 aa a 
Taylor series also. Subsequent substitution of (A 7) into (A 3) yields a relation 
between the actual pore velocity distribution u, and the potential flow velocity 
distribution u, : 

Dividing the entire equation (A 8) by the pore volume V and by the squared 
macroscopic velocity modulus lu01', we find that the left-hand side is the real part of 
the dynamic tortuosity Re (a), and that the first term of the right-hand side is the 
extreme high-frequency limit of the dynamic tortuosity a,. From (A 8) we write 

Re (a) = a,[l +i$92/A,], (A 9) 
where the parameter A ,  has the dimension of length and is given by 
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Equation (A 10) offers the opportunity for numerical computation of the value of A ,  
by shifting the pore walls while maintaining constant flow rate by adapting the flow 
potential difference A$ between two equipotential surfaces. This rather laborious 
procedure may be simplified considerably by writing 

The differentiation at constant flow rate has now been replaced by a more convenient 
differentiation at constant flow potential difference. We shall prove (A 11) by 
considering an incompressible flow a t  microscale 

v,. (9VU 9) = lupI2. (A 12) 

Integration over the pore volume and application of Gauss’ theorem yields 

where A is the integrating surface consisting of pore wall surfaces and two arbitrary 
bounding equipotential surfaces. Furthermore, n is the normal vector defining a 
surface element dA. As up-. = 0 a t  the pore wall surfaces, we arrive at 

11up1’ dV = Q A$. (A 14) 

We now take the derivative with respect to r of (A 14) a t  constant flow rate: 

At constant r ,  i.e. not changing the pore geometry, we may write 

[aQ/aA911. = Q/W. 
By substitution of (A 16) into (A 15), we finally arrive at (A 11). 

Appendix B 
B. 1. Determination of k, 

Stationary permeability properties of the porous samples within their containing 
brass cylinders are measured in a gas flow set-up, drawn in figure 6. It consists of two 
pressure chambers connected via the porous sample. Flow rates are varied by 
modifying the upstream pressure, and measured by means of a gasmeter. 
(Meterfabriek Dordrecht, Natte precisie gasmeter, Type 1). The pressure drop across 
the sample is measured, using a highly sensitive water manometer (v. Essen, Betz 
micromanometer, 500mm). As pressure drops appear to be very small, com- 
pressibility effects are ignored throughout. For low velocities the Darcy law holds : 

aP/ax = - ( T / k J )  (&/A 1 3  (B 1) 

where A is the total cross-sectional area of the porous sample and Q is the flow rate. 
For higher velocities, the Darcy law has to be extended by an extra term 
proportional to the flow rate squared: 

ap/ax = - ( r ~ / k J )  42 + bQ2, (B 2) 
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Water 
manometer 

FIGURE 6. Experimental set-up for stationary permeability measurements by means of air flow. 

Ni-disk 

1 kHz 
rL 

Measuring bridge 

FIGURE 7.  Experimental set-up for measuring the electrical conductivity of a porous 
electrolyte-saturated insulator. 

where b is an arbitrary phenomenological constant. This relation is often referred to 
as Forchheimer’s law. Measurements are performed for all pore types, and best-fit 
Forchheimer curves are subsequently calculated. 

B.2. Determination of a, 
The tortuosity is determined in an electrical conductivity experiment. The analogy 
between the acceleration of an inviscid incompressible fluid within a rigid porous 
medium, and the electrical current density within an electrolyte-filled porous 
insulator, was first demonstrated by Brown (1980). Later this analogy was also 
discussed by Johnson & Sen (1981), and experimentally verified by Johnson et al. 
(1982). We may write : 

where n is the conductivity of the fluid-filled porous insulator, and cf is the intrinsic 
fluid conductivity. 

The experimental set-up is drawn in figure 7. For obvious conductivity reaaons, 
the samples within their containing brass cylinders could not be used. Five new 
samples were prepared in an identical way within Perspex cylinders with a length of 
85 mm and an internal diameter of 70 mm. Each porous sample has a length L, of 
60 mm. The electrodes, consisting of porous Ni-disks, are placed on both sides against 

a, = $flf/fl, (B 3) 
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the porous sample, which has previously been saturated with a degassed 
0.01 mol/l KC1 saline solution. Conductivity is measured, using a resistance bridge 
(Marconi Universal Bridge TF2700). In  order to avoid electrolysis, all conductivities 
are measured using a.c. with a 1000 Hz frequency. 
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